Single-phase rectifiers are commonly used for power supplies for domestic equipment. However, for most industrial and high-power applications, three-phase rectifier circuits are the norm. As with single-phase rectifiers, three-phase rectifiers can take the form of a half-wave circuit, a full-wave circuit using a center-tapped transformer, or a full-wave bridge circuit.
Thyristors are commonly used in place of diodes to create a circuit that can regulate the output voltage. Many devices that provide direct current actually generate three-phase AC. For example, an automobile alternator contains six diodes, which function as a full-wave rectifier for battery charging.
Three-phase, half-wave circuit
An uncontrolled three-phase, half-wave midpoint circuit requires three diodes, one connected to eachphase. This is the simplest type of three-phase rectifier but suffers from relatively high harmonic distortion on both the AC and DC connections. This type of rectifier is said to have a pulse-number of three, since the output voltage on the DC side contains three distinct pulses per cycle of the grid frequency:
The peak valuesof this three-pulse DCvoltage are calculated from the RMS value of the input phase voltage (line to neutral voltage, 120V in North America, 230V within Europe at mains operation):. The average no-load output voltage results from the integral under the graph of a positive half-save with the period duration of (from 30˚ to 150˚):
Three-phase, full-wave circuit using center-tapped transformer If the AC supply is fed via a transformer with a center tap, a rectifier circuit with improved harmonic performance can be obtained. This rectifier now requires six diodes, one connected to each end of each transformer secondary winding. This circuit has a pulse-number of six, and in effect, can be thought of as a six-phase, half-wave circuit. Before solid state devices became available, the half-wave circuit, and the full-wave circuit using a center-tapped transformer, were very commonly used in industrial rectifiers using mercury-arc valves. This was because the three or six AC supply inputs could be fed to a corresponding number of anode electrodes on a single tank, sharing a common cathode. With the advent of diodes and thyristors, these circuits have become less popular and the three-phase bridge circuit has become the most common circuit.